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Abstract. Analytical expressions are derived for the incompressible flow due to a row of vortex and source lines 
spanning a duct whose walls are coaxial conical surfaces of revolution with a common vertex. The singularity lines 
have the shape of an arc of circle meeting the walls perpendicularly, and are defined by the intersection of a 
spherical surface with a series of equally spaced meridional planes. Although source lines of spanwisely varying 
strength are in general assumed, only vortex lines of constant circulation are considered. Simpler expressions are 
derived for the limiting two-dimensional cases when the flow is axisymmetric (actuator disc), and when the angular 
distance between the conical walls becomes vanishingly small. The expressions for the latter case are used in an 
example to obtain numerical results by a panel method for the velocity distribution of the flow about the inlet guide 
vane system of a water turbine of bulb type. 

1. Introduct ion  

One of  the approaches  to the theoretical  analysis of  the internal flow in turbomachinery  
consists in representing the presence of blades (rotating and stat ionary) and struts by 
singularities of  the vortex,  source, sink and dipole types. Two of the earliest and best  known 
methods  using singularities to describe the two-dimensional  plane flow about  a rectilinear 
cascade of aerofoil profiles are due to Schlichting [1] and Martensen [2] (for a comprehensive 
review see [3] and [4]). The  fully analytical solution of the three-dimensional  p rob lem has 
been  a t tempted  only for relatively simple and idealized geometries.  In the case of a 
rectilinear cascade bounded  by plane parallel walls, solutions have been obtained for the 
flow about  twisted blades spanning the walls normally [5] or with sweep and dihedral effects 
[6]. The  incompressible flow about  an annular cascade of radial source and vortex lines of  
constant strength bounded  by coaxial cylindrical walls was studied by Meyer  [7] (see also [8]) 
who integrated Laplace 's  equat ion for the potential  by separat ion of variables. This solution 
was extended by McCune [9] to source lines of radially varying strength in linearized 
compressible flow. In the case of  lifting lines of  spanwisely varying circulation, the prob lem is 
made more  difficult by the presence of trailing vortices convected by the flow, as is well 
known in propel ler  theory (see e.g. [10]), and analytical solutions can in practice be  obtained 
only if simplifying assumptions are introduced concerning the shape of the convected vortex 
filaments. In the case of  a rotor  in an annular cylindrical duct, the usual assumption consists 
in taking the free vortex lines to be of  truly helical shape,  building together  helical vortex 
surfaces (small per turbat ion theory) .  Solutions for this p rob lem were obtained by the present  
author [11] for incompressible flow and by O k u r o u n m u  and McCune [12] for linearized 
compressible flow. 

A m o n g  the great  variety of  bladed ducts occurring in turbomachinery ,  it is not uncommon  
to find cases when the walls can be adequately modelled by conical surfaces, with the blades '  
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axes meeting the end walls at approximately right angles. As an example, we mention the 
inlet guide vane system of certain hydraulic turbines of bulb type (see e.g. [13]). In the 
present paper, theoretical results are derived for this kind of situation, with the lifting and 
thickness effects of  the blades represented by vortex and source lines respectively. The flow 
is assumed incompressible, and irrotational outside the vortex singularities. In order  to 
obtain exact analytical solutions, we further restrict the geometry of the inner and outer  
walls to conical surfaces of revolution with a common vertex, which, in a system of spherical 
co-ordinates (r, 0, ~b), are given by 0 = constant. The vortex and source lines are circular arcs 
defined by r = constant, $ = constant. The solution of Laplace's equation for the velocity 
potential with the required boundary conditions is achieved by the method of separation of 
variables. Unlike in the case of screw propellers and other  types of open turbomachines,  
constant blade circulation along the span is widely adopted as a design condition in closed 
turbomachines,  which means a change in (circumferentially averaged) tangential velocity 
that is inversely proportional  to the distance from the axis (constant blade work for a rotor). 
On the other  side, lifting-lines of spanwisely varying circulation imply the presence of trailing 
vortex sheets, which in conical flow, even assuming small perturbation,  are of  considerably 
more complex shape than the helical sheets in cylindrical flow for which the solutions 
mentioned above were obtained. For  these reasons, only lifting-lines of constant circulation 
are considered here. Such restriction does not apply to the source lines, which are assumed 
here  in general to be of varying strength along the span. 

In Section 3, we look for the form taken by the general expressions, derived in Section 2 
for the three-dimensional case, when two limiting situations are reached in which the flow 
becomes two-dimensional. The first one (Section 3.1) is the axisymmetric flow resulting from 
taking the circumferential average of the velocity field, or equivalently the flow due to an 
actuator disc made up of vortex or source lines. The second case (Section 3.2) concerns a 
conical duct for which the angular distance between the walls becomes vanishingly small and 
the flow reduces to an infinitely thin layer whose thickness is proportional to the distance 
from the vertex. The expressions derived for the latter case are used, in Section 3.3, to 
obtain alternative expressions for the potential of the fully three-dimensional case, in the 
form of a superposition of an essentially two-dimensional potential and a singularity-free 
additional field representing the three-dimensionality. 

Section 4 deals with the application of the analytical expressions to turbomachinery flow 
problems. In particular it is shown how they can be employed to obtain numerical results for 
the velocity field of the flow through the conical-walled inlet guide vane system of a water 
turbine. 

2. Three-dimensional analysis 

We consider the incompressible inviscid flow through a cascade of N equally spaced vortex 
lines or source lines spanning two conical walls, and choose a system of spherical co- 
ordinates (r, 8, th), with unit vectors e,,  e 0, e , .  The  walls are at 0 = 0 x, 0 = 0 2 (0 < 01 < 0 2 < 
~).  The singularity lines are defined by r = 1, 01 ~< 0 ~< 0 2, ~b = 2 z r n / N  (n = O, 1, 2 . . . .  , N - 

1), their form being therefore an arc of circle (Fig. 1). The flow field is assumed irrotational 
everywhere except at the vortex lines and at the origin. We note that the radial flow, 
V r = cons tant / r  2, V 0 = V, = 0, due to a source at the origin, and the swirling flow, V~ = 
constant / ( r  sin 0), V r = V o = 0, due to a vortex along the axis of symmetry, both satisfy the 
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Fig. 1. Geometry of the duct and singularity lines, showing the system of spherical co-ordinates. 

conditions of irrotationality and incompressibility, as well as the boundary condition at the 
conical walls, and so can be used to build up solutions by superposition. 

2.1. Cascade o f  vortex lines 

In the following, we will assume the vortex lines to be of constant strength F along the span. 
Since there is no shed vorticity, the solution for the velocity field will apply to a stationary as 
well as a rotating row of lifting lines. Using a result for a more general case [5], we obtain 
the following expression for the velocity field V: 

V = V ~ -  % H ( r -  1) I" ~ ~b - ---~---/, r s i n O n = -  8 21rn~ (1) 

where ~ is a velocity potential, H( ) is Heaviside's unit step function, 6( ) is Dirac's delta 
function, and % is the tangential unit vector. We note that, since �9 is a discontinuous 
function (see below), the differential operators V and V 2 are to be taken as defined in the 
theory of generalized functions (see e.g. [14]). Introducing the equation of continuity, 
V .V= 0, the following equation is found for ~:  

V2~=  H ( r _  1 ) F  | ( 2~'n~ 
r 2 sin 2 0 ,,Z=_ 8'  th -- ---~-/ . (2) 

The flow region external to the N vortex lines is multiply-connected, with degree of 
connectivity N +  2, if a continuous velocity-potential is defined in this region it is a 
many-valued function, with cyclic constant F for circuits looping a vortex line. Instead we 
define ~ in the region external to the N vortex lines and having as barriers the meridional 
half-planes r > 1, ~b = 2 ~ r n / N  (n = O, 1, 2 . . . . .  N - 1); this is now a doubly-connected region 
(it is not singly-connected due to the presence of the conical hub). We introduce the 
additional condition that, for any circuit looping the conical wall in the region r <  1, the 
cyclic constant of V~ has the value N F / 2  (i.e. equals the circulation induced by a vortex 
along the duct's axis of strength NF/2) .  It is not difficult to conclude that �9 is discontinuous 
across the N meridional half-planes r > 1, th = 2 7 r n / N  (n = O, 1, 2 . . . . .  N - 1), with jumps 
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equal to F. Since it is more convenient to deal with a single-valued continuous function in the 
regions r < 1 and r > 1, we write 

dp = ~,  - FH(r - 1)S(th) + - -  47r ' (3) 

where 

1 N r  ~ 2 , r n ~ _ H  - ~ b -  
S ( r 1 6 2  ~'~ H r  N / N / J  

n = l  

1 Re{~[1 i p(i th)} = -- - ex nN 
'/3" = n 

(4) 

is a saw-tooth function of period 27r/N varying linearly between - 1 / 2  and 1/2 in the 
intervals2~rn/N< r < 2 ~ ( n  + 1)/N (n = 0, -+1, +2 . . . .  ). Defined in this way, ~1 is single- 
valued, continuous and continuously differentiable in the whole space, except at r = 1, and is 
found to satisfy Laplace's equation V2~1 = 0 (r # 1). 

The problem of obtaining suitable solutions for the potential ~1 can be dealt with by the 
method of separation of variables in our spherical system of co-ordinates [15]. Denoting the 
inner flow (r < 1) and the outer  flow (r > 1) by the superscripts (i) and (o) respectively, we 
find the following double series of eigenfunctions 

0~o) j = Re  A(O) e T.p(y) , 
= = --rip 

(5) 

where y = cos 0, and A (i) (o) " ' n p ,  Anp are constants to be determined from the matching conditions 
at r = 1 to be discussed later. In (5), and throughout the present paper, the upper sign, in -+ 
or  -w, is to be taken for the inner flow (r < 1) and the lower sign for the outer flow (r > 1). 
The spherical eigenfunctions T,,p(y) and the eigenvalues a,,p (taken as nonnegative) are 
defined by Legendre 's  associated equation 

2 dT~p [ 1 n2N 2 ] 
(1 _ y 2 )  ddy 2Tn-'----~ p - 2 y  ~ + a]P 4 ~_--~-i j Tnp = 0 ,  (6) 

together with the boundary conditions T'p (y l )  = T~p ( Y 2 )  = 0 (arising from the condition of 
zero normal velocity at the conical walls) and the normalizing condition 

f f l  T~e(Y) dy = Yl - Y2 (Yl = cos 01, Y2 = cos 0 2 ) .  
2 

(7) 

The expressions of the functions Tnp(y ) are then found to be linear combinations of 
Legendre 's  associated functions of the first and second kind [16], 

C nnN z \ + nN 

and the eigenvalues ane are the roots of  the equation 

d ,,N d [._~y p,~_t/2(y)]yx[_.~y anN_l/2(Y)]y2__ [ ~ y  enN , , ]  d nN - -o  (8) 
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The values of the coefficients C~p, D,p can be determined from T ' p ( y l )  = 0 or T 'p ( y2 )  = O, 
and from (7). It can be shown that, for each n (n = 0 ,  1 , 2 , . . . ) ,  the functions Tnp(y  ) 
( p  = 0, 1, 2 , . . . )  form a complete set of orthogonal functions with weighing function equal 
to a constant. In particular, a00 = �89 and Too = 1. If we multiply (6) by Tnp, integrate between 
Y2 and Yl, and take into account the boundary conditions, we obtain 

ot,e 4 - ( y a - y 2 )  -1 ( 1 - y ) k - - ~ - - y  ) + - -  d y .  z 1 -- y2 
(9) 

Therefore a~p i> 1/2, the equality sign applying only to a00. It follows that the gradient of (I)1, 
as given by (5), vanishes as r--~ 0 or r--~ oo. 

Expressions can be found for the constants A(~ and A(~p ) by introducing the condition that 
the potential �9 and its r-derivative should be continuous across the cascade surface r -- 1. We 
then obtain a~i) = a~~ = 0 (p  = 0, 1, 2, .) and , ~op " Aop �9 �9 

/A(O)/ ~ n t n p  1 +- , n 1,2 . . . . .  p 0 , 1 , 2  . . . . .  
I . - - n P  J 

(10) 

where 

t,p = (Y l  - Y2) -1 Tnp(y  ) d y ,  
2 

t . p T . p ( y )  = 1. (11) 
p=O 

We note that the circumferentially averaged value of ~7(I) 1 is zero, and so d~ 1 does not 
contribute to the swirl circulation (about a closed curve enclosing the inner duct) in either 
the inner (r < 1) or the outer (r > 1) flow field. It follows that, for the velocity field as given 
by (1) and (3), the swirl circulation induced by the N lifting lines is evenly divided between 
the inner and outer flow regions, and is found to be equal to _+NF/2 for r ~  1. 

A difficulty arises if these results are to be used for numerical evaluation or in a 
lifting-surface theory, due to the singular behaviour, at the vortex lines, of the double series 
in (5), and its r- and 4~-derivatives, implying poor convergence near those lines. Two kinds 
of singularities are expected to occur in the velocity field. The first one is essentially 
two-dimensional and is of the type (distance)-1. The second one is associated with the lines' 
curvature; Kiichemann and Weber [17] have shown that this singularity is logarithmic and 
affects the circumferential velocity component V,. For given 0, the singularities of both kinds 
remain essentially unchanged if the conical walls 01 and 02 are replaced by walls at 0 and 
0 + dO, in which case the flow can be dealt with more simply as two-dimensional; in 
Subsection 3.2 a solution is derived for this case. Then in Subsection 3.3 w e  obtain an 
alternative expression for the fully three-dimensional flow as the superposition of the 
two-dimensional solution and a singularity-free double series accounting for the three- 
dimensionality. 

2.2. Cascade o f  source lines 

Let q be the volume flow rate emitted by each source line per unit length of line. We assume 
q in general to be a function of O (or of  y = cos O). The total flow rate emitted by one source 
line is 
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Q = q(o) dO. (12) 

With the velocity field given by V= V~, the equation of continuity can be written as 

( 27rn~ 
V 2 ~ =  q 3 ( r - 1 )  6 ~ b - - - - ~ - /  

sin 0 . . . .  " (13) 

We write the potential in the following form 

NQ 1 _ 1  +01 
~ =  4.rr(~l -- y2) 

(14) 

The first term on the right-hand side of (14) represents, for r < l  or r >  1, the flow due 
respectively to a point sink or a point source at the origin, absorbing or emitting through the 
duct a flow rate equal to NQ/2. Consequently the second term, O1, is required to give no net 
contribution to the total flow rate through any duct section r = constant for either r < 1 or 
r > l .  

The potential q~l satisfies Laplace's equation (for r # 1), which can be solved by separation 
of variables as before, leading again to expression (5). By requiring the potential @ to be 

�9 ( i )  (o)  continuous across r = 1, we obtain A~p = A~p (-- A,p).  The values of the coefficients A ~p will 
be determined from the equation of continuity, as follows. Expressing V2~ in spherical 
co-ordinates, multiplying both sides of (13) by r 2 and integrating between r = 0 and r = ~, we 
find 

r a t I )  ] | | -~r_lr=o+f0 [ ~ y ( ( 1 - y 2 ) - ~ y ~ ) + (  1 y2)-1a2tl)1 a~b2 j dr  

=(1-yZ)-l/2q(y) ~ 8 ( t b - 2 z r n ~  
. . . .  N / "  (15) 

The summation in (15) represents a periodic delta function. An expression for it can be 
obtained by taking the t.b-derivative of (4) and is 

8 2 N N 
. . . .  - - -  = ~ + --  cos(nN~b). (16) 

7r  = 

It is convenient to express (1 - y2)-l/2q(y) = q(y)/sin 0, on the fight-hand side of (15), as a 
series of the orthogonal eigenfunctions T,p(y), 

q(Y) _ 
s in0 e---0 a~pT~p(y), n = 0 , 1 , 2  . . . . .  (17) 

= 

with 

f;1 q(y) T~p(y) dy. a , p = ( y l - y z )  - 1  ~ s i n 0  (18) 

It turns out that aoo = Q/(Yl - Y2). We note also that, if q/sin 0 = constant, then a0p = 0 
(p  = 1, 2 . . . .  ); this result, that will be used later in the paper, follows from Too = 1 and the 
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fact that any constant is orthogonal to the remaining eigenfunctions Top , p = i , 2 , . . . .  
Taking into account (14), (5) and (17), and performing the integration indicated in (15), we 

find A00 = 0, 

N a0p 
= - - ,  p = l , 2 , . . . ,  (19) 

A~ 4~r aop 

N anp 
= - - ,  n = 1 , 2 , . . . ,  p = 0 , 1 , 2  . . . . .  (20) A np 2,71" Olnp 

Like what was said above in connection with the vortex lines, singularities of the same 
type are expected in the velocity field in the case of source lines; the main difference lies in 
that the logarithmic singularity affects the radial velocity component V, rather than V~ (see 
[17]). An alternative expression for the flow field is derived in Subsection 3.3. 

3. Two-dimensional analyses 

In the practical calculations of turbomachinery, one of the most frequently adopted 
simplifying assumptions consists of considering the three-dimensional flow field as the 
combination of two kinds of two-dimensional fields. One is the axisymmetric field (the 
so-called meridional flow) which results from taking the circumferential average of the flow 
velocity. The other one is the blade-to-blade flow on the stream surfaces of revolution of the 
meridional flow, or, more precisely, between pairs of such surfaces forming layers of 
vanishingly small thickness. In what follows, we consider first the axisymmetrical flow that 
results from taking the circumferential average of the velocity field due to the vortex and 
source lines for which analytical results were obtained in the preceding section. We note that 
this averaging process is equivalent to replacing the periodic delta function, in equations (1) 
(for vortex lines) and (13) (for source lines), by the first term N/2z t  of its Fourier expansion 
(16). In turn this is equivalent to distributing the bound vorticity, or the fluid emission by the 
source lines, uniformly in the circumferential direction, in such a way that we end up with an 
actuator disc (in the present case with the shape of a spherical annular surface). The theory 
of the axisymmetric flow due to a plane actuator disc in a cylindrical annular duct is well 
known [18] and can be considered as a limiting case of the geometry we are dealing with 
here. In Subsection 3.1 we investigate whether, and under which conditions, the stream 
surfaces of revolution are exactly conical. In Subsection 3.2 we start from the expressions 
derived in Section 2 for the potential field due to a row of vortex and source lines in conical 
flow, and look for the form they take in the limiting case when the angular distance between 
the walls decreases to zero, i.e. 02 - 01 ---> 0. The resulting expressions are then modified so 
that the singularities are isolated and only singularity-free series are left. Finally, in 
Subsection 3.3, these expressions, combined with the solutions derived in Section 2 for the 
three-dimensional problem, are used to obtain alternative solutions for the fully three- 
dimensional flow that are more suitable from the computational point of view. 

3.1. Circumferentially averaged velocity field 

We Will use an overbar to denote a circumferentially averaged quantity, and consider first the 
case of the vortex lines. Equation (1) gives 
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3" V = V q b - e , H ( r -  1) ~ .  

Here R = r sin 0 is the distance to the cones' axis, and we have replaced NF -= 2~ / ,  3' being 
the disc's circulation per unit circumferential angle (3"/R is the circulation per unit circum- 
ferential length). From (3) we find V~ = %3'(2R) -1, since Vq) 1 = 0 (as a consequence of 
A(O = a(o) = 0, p = 0, 1, 2, .) and S = 0. We then obtain 0p ~ 10p �9 " 

3" ~r= __ % ~. (21) 

As should be expected, this represents free-vortex flow, with opposite directions of swirl on 
each side of the disc. If a velocity field of the type e, x constant /r  2 (source or sink at the 
origin) and/or  a field e~ x constant /R were superposed upon (21), the resulting flow would 
still have conical surfaces as stream-surfaces. This situation corresponds, in the cylindrical 
geometry, to flow in radial equilibrium (zero radial velocity) on both sides of a plane 
actuator disc. This is known to occur [18] when, as here, the disc introduces a discontinuity 
in the tangential velocity that is inversely proportional to the radial co-ordinate R. We should 
not expect in general to have 17" 0 = 0 (conical stream-surfaces) if F (or 3') is not spanwisely 
constant; in such case the distributed trailing vorticity will produce rotational flow down- 
stream of the disc. 

We consider next the case of source lines and write N Q  =- Q* (total flow rate emittted by 
the disc) and Nq =- 2r (q* = flow rate per unit area of disc). From (14), (5) and (19), we 
find 

a ~  

~r= W_er 4~rr2(yl _ Y2) + V~I ' (22) 

o o  

VOl = 41rN ~2 a0p r_+a0 _3/2[e,(+_ aop - � 8 9  % sinOT~p(y)] . 
n = l  O/0p 

(23) 

In the special case when q/sin 0 = constant, we have aop = 0 (see the text following (18)), 
a n d  so VgP I = 0 and 17 e = 0, i.e., we have conical streamsurfaces. This happens when the 
source strength q is proportional to the circumferential pitch (2~r/N)sin 0, which roughly 
corresponds to spanwisely constant blockage ratio (blade thickness divided by cascade pitch). 

3.2. Flow in a thin conical layer 

In the quasi-three-dimensional approach outlined at the beginning of this section, the 
two-dimensional blade-to-blade flow results from dividing the duct space into infinitely thin 
layers by the family of stream-surfaces of revolution of the circumferentially averaged flow. 
We saw in Subsection 3.1 that such stream-surfaces are exactly of conical shape when: (i) the 
line vortices are of constant strength; (ii) the line-source strength is proportional to the 
distance from the axis; it is obvious that the same will still be true if line-vortices and 
line-sources satisfying these conditions are distributed over r I < r < r 2 to model blades of 
finite chord, and when free-vortex flow or flow due to a point source or sink at the origin are 
superposed. In what follows, we give expressions for the velocity potential when the angular 
distance between the conical walls becomes infinitely small, i.e. 02 = 01 + e, Y2 = Y l -  e', 
e ,  E w ---> 0 .  



Flow field due to a row of  vortex and source lines 211 

We first note that Legendre 's  associated equation (6) becomes a differential equation with 
constant coefficients. For  each n, only the zero-order  term T,0 is kept,  and we find 

T,0 = t~0 = 1 ,  
1 nZN 2 ]1/2 

or,0= ~ + j - - - - ~ j  - - a ,  ( n = 0 , 1 , 2 , . . . ) ,  

where the subscript 1 has been dropped from Yl. 
For  a row of vortices, the velocity field is still given by (1) and (3), and the expression for 

~1 can be found to be 

~1 = +  F -  ~=al(l+-l--~--)sin(nNd~)r •  . (24) 
- 2~r = n 2a ,  

For  a row of sources, the potential  �9 (which we denote  by op za) becomes 

~ z a = +  Nq ( 1 _ 1 )  Nq ~=1 l r+-~"-'/2c~ - -  . 

- 4~'sin 0 21r sin 0 = a .  
(25) 

As mentioned before in Section 2, the velocity field has singular behaviour at the vortex or 
source lines. This results from the superposition of two kinds of singularities. The first one is 
essentially two-dimensional and inversely proportional  to distance, whereas the second one is 
logarithmic and connected with the curvature of the lines. It is easy to conclude that these 
singularities result from the contribution of the series in (24) and (25). 

We start by dealing with the first type, and note that the singularity is essentially the same 
as in the two-dimensional plane field about  a rectilinear vortex of strength F or a rectilinear 
source of flow rate q per unit length. To separate this two-dimensional contribution, we 
develop the conical surface 0 = constant onto the plane ~ = p e i~', with the vortices or sources 
lying at p = 1, ~b = 21rn/N* (n = 0, ---1, ---2 . . . .  ), where N* = N/s in  0. The two-dimensional 
complex potential  due to such a row of point vortices of circulation F can be obtained from 
the well known expression for the rectilinear infinite row (see e.g. [19]) by conformal 
transformation, and is found to be 

w(~)  = - 2--~iF ln(~N./2 _ ff N*/2) . (26) 

To relate this plane field to the conical flow field, we take p = r, ~b = - ~b sin 0. Hence the 
two-dimensional potential (i.e. the real part of w) can be written as 

F [ sin Nd~ 
~p = --- ~ arctan exp(N.i1 n r[) - cos N~b 

Using the expansion [20], 

sin fl x ~  1 
arctan = f'~x - e-"e  sin n/3 (~ > 0) (28) 

e ~ - cos fl = n 

we then obtain the following expression for the complete potential ~ (which we denote  here  
by ~2d) due to a row of vortices between two conical walls 0, 0 + dO: 

~Za(r, ~b) = ~(r,  ~b) + rA( r ,  ~ ) ,  (29) 
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where 

1 = 1 [(1 + r • ] A(r, , ) =  T- ~ ~ n s in(nN*,)  1--~-~r• 
- 2an~ 

Correspondingly, we find for a row of sources the complex potential 

w = ~ ln(~ "N'/2 - ~ . - N * / 2 )  , 

(30) 

(31) 

whose real part is 

q {ln[exp(-2N*lln rl) - 2 exp( -  N*lln rl) cos NO + 1] + N* In r}.  ~I'=-+ ~ 

Using the expansion [20], 
v o  

ln(e_2~ 2 e _ ~ c o s / 3 + l ) = _ 2 ~  1 - - e -n~cosn /3  ( ~ > 0 ) ,  
n=l n 

we obtain for a row of sources 

N * q ( l  ) 
dP2d(r, ~b) = ~(r ,  d/) +- ~ r + In r -- 1 + qA(r, d/) , 

where 

N* ~ [ r • 

A(r, qJ)= - 2--~ ~--1= cos(nN* ~) an 

(32) 

(33) 

(34) 

r•  * 

nN* ]" (35) 

We point out that the second term on the fight-hand side of (34) (which is a function of r 
only) accounts for the fact that the velocity field induced by a point source (at the origin) in 
plane flow is proportional to (distance) -1, differently from the proportionality to (distance) -2 
for a point source in three dimensions. 

It is important to note that, in our two-dimensional space (r, ~), it is V2~ = 0 (except at 
the sources), but V2~ 2a is in general not equal to zero. This means that the plane flow 
represented by ~2d is not incompressible, a conclusion that should be expected since we are 
dealing with a layer of fluid whose thickness is not constant (it is proportional to r). 

It is not difficult to conclude that �9 is the only term on the fight-hand side of (29) or (34) 
that contributes to the singularities of type (distance)-1 in the velocity field about the vortex 
and source lines. However, it should not be forgotten that, in spite of the angular width of 
the conical duct having been reduced to a vanishingly small value, these lines retain their 
curvature, and so an additional logarithmic singularity is expected to occur at each line, as 
shown by K/ichemann and Weber [17]; it affects the circumferential velocity component V~ 
in the case of vortices and the radial component V r for sources. It is obvious that the 
logarithmic singularities must come from the contribution of the term A. Expressions 
suitable for computation are given in the Appendix for 0A/0qJ (vortices) and OA/ar (sources) 
in which the logarithmic singularities are separated from the series. 

3.3. Alternative expressions for  the three-dimensional potential 

The fact that the velocity field about the vortex or source lines in the fully three-dimensional 
case (02 - 01 finite) has singularities that are essentially identical to those in a thin conical 
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layer of angular width d0, suggests that the three-dimensional potential ~( r ,  0, q~) could be 
expressed as the superposition of the corresponding two-dimensional potential qb 2a (expres- 
sions for which were derived in the preceding subsection) and a singularity-free additional 
field representing the three-dimensionality. To do that, we consider the expressions derived 
in Section 2 for the three-dimensional potential, as well as equations (24) and (25) for the 
two-dimensional case. Then, using the second equation (11), we obtain easily, for vortices, 

~(r,O, C~)=c~2d + --[~ n~__ 1 ~ --tnP sin(nNc~)T~p(y 1 +_ r• -1/~ 
- 2 1 r  = p=o n 2Vtnp 

For sources, we use (17) and find 

- 4"---~ = a~176 - - % p  - + r - 1  

N c o s ( n N q b ) T n p ( y ) [ r  "_~.~p 21r anP . (37) 
n = l  p=O (Tln 

Considering what was said above, it is expected that the series on the right-hand side of (36) 
and (37) will present no convergence problems, even in the vicinity of the vortex and source 
lines. 

4. Applications 

The results derived above for the velocity field V(r, 0, ~b) can be generalized to obtain the 
velocity V*(r, 0, 4') due to a row of vortex lines of circulation F or to a row of source lines of 
flow rate q(O) per unit length of line, located at r =  r0, ~b = dpo+2~rn /N ( n =  
0, 1, 2 . . . . .  N - 1). We easily find 

V * ( r ,  0, c~) -1 = r o Vr(r/ro, 0,. c~ - dpo), (38) 

with identical relations applying to the components V 0 and V,. 
In most applications, the flow field far upstream (i.e., as r---> 0 for outward flow or r---~ o0 

for inward flow) is given, and a singularity distribution satisfying certain conditions (given 
blade geometry, flow deflection, etc.) is to be found. In such cases it is convenient to add 
-NF(4~r r  sin 0) -1 to the circumferential velocity component V, as given by the expressions 
derived in Sections 2 and 3 for the flow field due to a row of vortex lines. (Here,  the plus 
sign is to be taken for inward flow and the minus sign for outward flow.) In this way, it can 
easily be found that the resulting velocity V(r, 0, $ )  due to a row of vortex lines vanishes far 
upstream. We note that no similar modification is needed for the case of source lines, since 
the condition of zero total flow rate of the source distribution has to be satisfied anyway if 
blades with a dosed surface are to be modelled. Then the complete velocity field can be 
considered as the superposition of: (i) a basic field, due to a source at the origin and possibly 
a vortex along the duct's axis, coinciding with the incoming field far upstream; and (ii) a 
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perturbation field due to a distribution of vortex and source lines on or within the blades' 
surfaces. 

In order to illustrate the application of the expressions derived above to a case of practical 
interest, we consider the flow about the inlet guide vane system of a water turbine of bulb 
type, consisting of N blades spanning two coaxial conical walls with a common vertex. For 
simplicity, the distance between the walls is assumed very small, so that the expressions 
derived in Section 3.2 may be applied. In the panel method used for the numerical 
calculation, the blade profile is approximated by a contour consisting of n rectilinear 
segments. Vortices and sources are uniformly distributed over each line segment. (For a 
general description of the method see [21].) In order to make the problem determinate, the 
vortex distribution density is taken equal for all segments. The resulting velocity field is given 
by the superposition of the undisturbed flow field and the fields induced by the singularity 
distributions on the blade contour. The vortex and source distribution densities at the n 
line-segment elements (n + 1 unknowns) are then determined by introducing: (i) the 
condition of velocity tangent to the contour at n control points chosen as the mid-points of 
the elements; and (ii) the Kutta condition at the sharp trailing edge, in the form of equality 
of velocities at the control points on the two segments adjoining the trailing edge. The use of 
the exPressions derived in Section 3.2 ensures that the boundary conditions at the conical 
walls, as well as the condition of circumferential periodicity, are automatically satisfied. 

The computation process involves the calculation of the velocity at each control point j 
( j - - 1  to n) induced by the vortex or the source unit-density distribution on the contour 
element k (k = 1 to n); such values form a pair of matrices of influence coefficients. These 
coefficients are obtained by integrating over the contour element in question the expressions 
for the velocity field induced by a row of vortex or source lines of unit strength; such 
expressions can be obtained from the results of Section 3.2 generalized by transformation 
(38). If j = k (velocity induced by a contour segment at its own control point), the integrand 
is singular at the control point, and the principal value of the integral is to be taken. As 
referred to above, the velocity field presents two kinds of singularities. The stronger one, of 
type (distance)-1, is essentially two-dimensional and results from taking the gradient of the 
right-hand side of (27) or (32); it can easily be separated and integrated analytically (for 
j - - k ,  as well as for ] # k, see [21]). The weaker, logarithmic singularity is essentially 
three-dimensional and was separated in the Appendix. The separated logarithmic function 
can be integrated analytically for ] = k, and integrated numerically or simply taken constant 
for j # k. The remaining terms in the expressions of the velocity field are regular and may be 
taken constant in the integration with good approximation. 

Numerical results were computed for the conical cascade represented unfolded in Fig. 2. 
The cone angle is O = 25 ~ and the cascade comprises six blades of NACA 63A604 profile. 
The incoming flow is directed towards the cone vertex and is swirl-free. Figure 3 shows 
numerical results (solid line), obtained with 400 line-segment elements along the blade 
contour, for the blade surface pressure coefficient (defined as 1 - V2Vo 2) as a function of 
distance along the blade chord. Here V is the calculated velocity on the blade surface, and V 0 
(proportional t o  r -E) is the velocity of the undisturbed flow at the same location. Also shown 
in Fig. 3 for comparison are the results (dotted line) for the corresponding two-dimensional 
plane flow about the circular cascade of blades depicted in Fig. 2 (in this case V 0 is 
proportional to r-1); these results were obtained by keeping only the two-dimensional term 

in the fight-hand side of (29) and (34). The distance between the solid and dotted lines in 
Fig. 3 can be regarded as representing the three-dimensional effects due to radially-varying 
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Fig. 2. Geometry of unfolded conical cascade comprising six NACA 63A604 profile blades. Cone angle is 0 = 25 ~ 
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Fig. 3. Blade surface pressure coefficient versus distance along the chord for the cascade of Fig. 2. V and V 0 are the 
surface velocity and the velocity of the undisturbed flow respectively. The dotted line represents results from simple 
two-dimensional theory. 

d i s t ance  b e t w e e n  the  con ica l  wal ls  and  to  s ingula r i ty - l ine  cu rva tu re ;  the  f igure  shows tha t  

such effects  can be  subs tan t i a l .  

5 .  C o n c l u s i o n s  

A n a l y t i c a l  expres s ions  in t he  fo rm of  d o u b l e  ser ies  have  b e e n  de r i ve d  for  the  ve loc i ty  f ield 

due  to  vo r t ex  a n d  source  l ines  in a conica l  a n n u l a r  duct .  In  b o t h  cases  it was  poss ib l e  to  
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isolate the mathematical singularities of type (distance) -1 in a two-dimensional term ex- 
pressed in closed form. The weaker, logarithmic singularities associated with vortex and 
source line curvature were also isolated. In this way convergence problems were overcome, 
rendering the expressions suitable for integration over the blade chord, or over the blade 
surface elements if a panel method is used. In the limiting case of axisymmetric flow 
(actuator disc), it has been established that the stream-surfaces of revolution are of exact 
conical shape if the vortex lines that make up the disc are of spanwisely constant strength, 
or, for source flow, if the fluid is emitted at a uniform rate per unit area of the disc 
(spherical) surface. This can be regarded as an extension of the corresponding results for a 
classical plane actuator disc in a cylindrical duct. We point out that the expressions derived 
for the other limiting, two-dimensional case (very small distance between the conical walls) 
are suitable for use in blade-to-blade-flow numerical methods, as part of a quasi-three- 
dimensional calculating scheme or when the distance between the walls is considered small 
enough to make such approximation acceptable. This was illustrated by a numerical example 
in which the analytical expressions derived here were combined with a panel method to 
compute the flow about a conical row of blades. 
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Appendix. Singularities of OA/Or, OA/O0 

We consider first the case of vortices, and rewrite equation (30) in the form 

1 ~=1 -1 sin(nN.~O)[bn(r) + c.(r)] , (A1) A = ~ - ~  = n 

where 

b~(r)=r._~zv.[+ - 2nN ----'-'~1 ( ~ +  8nN*l 1)  l n r  ] " (A2) 

Applying well-known techniques of expansion in power series, it can be shown that 

c.(r) = r• -3 + O(ln 2 r)], as n---)~ and r--)1.  (A3) 

Then, if use is made of (28) and (33), we obtain 

OA ( 1 ) N * | 
O~b 1 ~ In r A + B ~ ~ n=l ~ cos(nN*O)c,(r) (A4) 

where 

1 
A = ~ ln(r -~2u" - 2r • cos N*d/+ 1), (A5) 
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r ~m cos N*~b - 1 
In r r~.2N. _ 2r~m cos N*~b + 1 (A6) 

It can be  found that A b e c o m e s  infinite and B o f  the form 0 x 0% as r---> 1 and $---~ O. T h e n  

w e  wri te  r = 1 + e cos  a ,  qJ = e sin a ,  and obta in  

A = ~--~1 ln(N*ld) + O(N*e) 1 
B =  ~ c o s  2 a + O ( N * e ) ,  a s e ~ 0 .  (A7) 

In the s a m e  way ,  for sources ,  w e  start f r o m  (35 ) ,  and write  

OA __ N* 
#r 27rr f7'=1 cos(nN*~b)[d.(r) + e . ( r ) ] ,  (A8) 

where 

2nN* + ~- In r ; (A9) 

it can be  s h o w n  that,  as n - - .oo  and r--* 1, e.(r) is o f  the  s a m e  order  of  magn i tude  as cn(r ) 
(see  ( A 3 ) ) .  Then  w e  find 

Or r ~ In r + cos(nN*~b)e.(r) (A10) r 2~rr = 

where A and B are still given by (A5) and ( A 6 ) .  

The series in (A4) and (A10) present no computational difficulty even at, and in the 
vicinity of, the vortices and sources. 
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